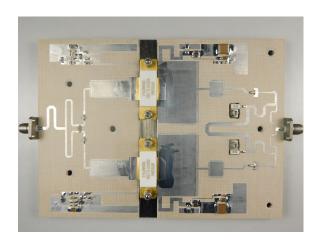


# L-Band, GaN/SiC, RF Power Amplifier Pallet

## 1030-1090 MHz | 2200 W typ | 57% Efficiency typ | 16dB Gain typ | 50 V | Mode S ELM


IGNP1011L2400 is a high power GaN-on-SiC RF power amplifier pallet that has been designed specifically for IFF/SSR Systems operating under either Mode S ELM [48x ( $32\mu$ s on,  $18\mu$ s off), 6.4% Long Term Duty Cycle] or standard Mode S [ $128\mu$ s, 2% Duty Cycle] pulse conditions. It supplies a minimum of 2200W of peak output power, with typically >16 dB of gain and 57% efficiency. It operates from a 50V supply voltage.

## **FEATURES**

- GaN on SiC HEMT Transistor Technology
- Matched to  $50\Omega$  at both input and output
- Suitable for both 1030 and 1090 MHz
- 100% RF Tested Under Mode S ELM pulse conditions

# **APPLICATIONS**

- L-band Avionics IFF & SSR Systems
- Suitable for both uplink and downlink (Transponder)



## Table 1. RF Electrical Characteristics (Case temperature = 25+/-5 °C unless otherwise stated)

| Parameter                       | Symbol           | Min  | Тур | Max | Units   | Test Conditions                                             |
|---------------------------------|------------------|------|-----|-----|---------|-------------------------------------------------------------|
| Output Power                    | P <sub>out</sub> | 2200 |     |     | W       | P <sub>IN</sub> = 55W                                       |
| Gain                            | G                | 16   |     |     | dB      | f = 1030, 1090 MHz                                          |
| Gain Flatness                   | OPF              |      |     | 1.5 | dB      | Mode S ELM pulse conditions (48 x                           |
| Drain Efficiency                | η                | 55   |     |     | %       | $[32\mu s \text{ on, } 18\mu s \text{ off}]), LTDC = 6.4\%$ |
| Pulse Droop                     | D                | -0.6 |     |     | dB      | V <sub>DS</sub> = 50V, I <sub>DO</sub> = 200mA              |
| Input Return Loss               | IRL              | 10   |     |     | dB      | DS DQ                                                       |
| Delta Insertion Phase Variation | d-IP             | -20  |     | +20 | Degrees |                                                             |
| Load Mismatch Stability         | VSWR-S           | 2:1  |     |     |         |                                                             |
| VSWR Withstand                  | VSWR-LMT         | 3:1  |     |     |         |                                                             |

Note: Consult Integra Technologies Application Note 001 for information on how RF output power and pulse droop are measured.



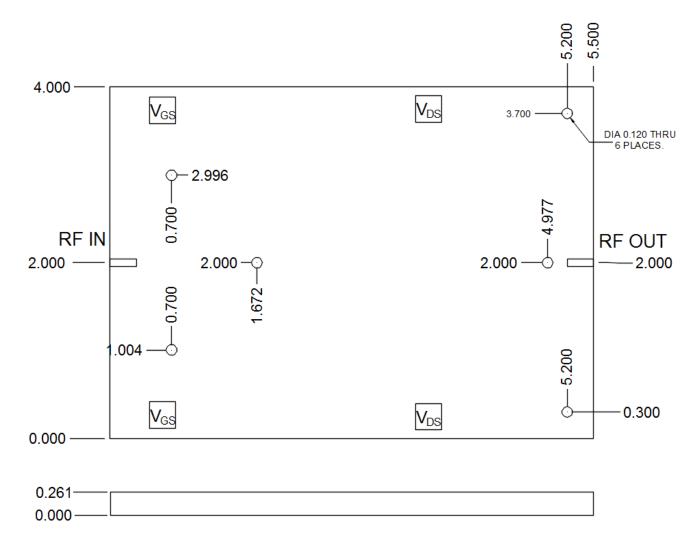
## Table 2. Absolute Maximum Ratings (Not Simultaneous)

| Parameter               | Symbol             | Value       | Units | Test Conditions |
|-------------------------|--------------------|-------------|-------|-----------------|
| DC Drain-Source Voltage | V <sub>DS</sub>    | 50          | V     | 25 °C           |
| DC Gate-Source Voltage  | V <sub>GS</sub>    | -8 to +1    | V     | 25 °C           |
| DC Drain Current        | I <sub>D</sub>     | 85          | A     | 25 °C           |
| DC Gate Current         | I <sub>G</sub>     | TBD         | mA    | 25 °C           |
| RF Input Power          | P <sub>RF,IN</sub> | 55          | W     | 25 °C           |
| Storage Temperature     | T <sub>stg</sub>   | -55 to +150 | 0°C   |                 |

Note: Operation outside the limits given in this table may cause permanent damage to the module

#### Table 3. DC Electrical Characteristics (Case temperature = 25+/-2 °C unless otherwise stated)

| Parameter                                         | Symbol         | Min | Тур  | Max | Units | Test Conditions                                |
|---------------------------------------------------|----------------|-----|------|-----|-------|------------------------------------------------|
| Drain-Gate Breakdown Voltage BV <sub>DG</sub> 150 |                | 150 |      |     | V     | Source terminal open, $I_{DG}$ = 4mA           |
| Gate Pinch-Off Voltage                            | V <sub>P</sub> | -5  |      |     | V     | $V_{_{\rm DS}} = 50V, I_{_{\rm DS}} = 1mA$     |
| Quiescent Gate Voltage                            | V <sub>Q</sub> |     | -2.6 |     | V     | V <sub>DS</sub> = 50V, I <sub>DS</sub> = 200mA |


#### Table 4. Thermal Resistance (Case temperature = 25+/-5 °C unless otherwise stated)

| Parameter                                                           | Symbol          | Min | Тур | Max | Units | Test Conditions                                                                                                                                                                                                      |
|---------------------------------------------------------------------|-----------------|-----|-----|-----|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Peak Thermal Resistance,<br>channel to underneath<br>side of module | R <sub>th</sub> |     | TBD |     | °C/W  | $\begin{split} P_{_{OUT}} &= 2200W \\ f &= 1030, 1090 \text{ MHz} \\ \text{Mode S ELM pulse conditions (48 x [32 \mu s on, 18 \mu s off]), LTDC = 6.4\% } \\ V_{_{DS}} &= 50V, I_{_{DQ}} = 200\text{mA} \end{split}$ |

## Table 5. Typical Performance

| Freq<br>(MHz) | V <sub>DD</sub><br>(V) | P <sub>iN</sub><br>(₩) | IRL<br>(dB) | Р <sub>оит</sub><br>(W) | G <sub>P</sub><br>(dB) | I <sub>d</sub><br>(A) | N <sub>c</sub><br>(%) | Droop<br>(dB) |
|---------------|------------------------|------------------------|-------------|-------------------------|------------------------|-----------------------|-----------------------|---------------|
| 1030          | 50                     | 55.0                   | 11.0        | 2232                    | 16.08                  | 77.09                 | 57.84                 | -0.23         |
| 1090          | 50                     | 55.0                   | 14.0        | 2214                    | 16.05                  | 77.5                  | 57.14                 | -0.13         |





**Dimensions: Inches** 



#### **ESD** Rating

| Parameter Rating                |     | Standard               |  |  |  |  |
|---------------------------------|-----|------------------------|--|--|--|--|
| ESD Human Body Model (HBM) TBD  |     | ESDA/JEDEC JS-001-2012 |  |  |  |  |
| ESD Charged Device Model (CDM)  | TBD | JEDEC JESD22-C101F     |  |  |  |  |
| Moisture Sensitivty Level (MSL) | 0   | IPC/JEDEC J-STD-020    |  |  |  |  |

DEFINITIONS: DATA SHEET STATUS

Advanced Specification - This data sheet contains Advanced specifications.

Preliminary Specification - This data sheet contains specifications based on preliminary measurements and data.

Final Specification - This data sheet contains final product specifications.

MAXIMUM RATINGS Stress above one or more of the maximum ratings may cause permanent damage to the device. These are maximum ratings only operation of the device at these or at any other conditions above those given in the characteristics sections of the specification is not implied. Exposure to maximum values for extended periods of time may affect device reliability. DISCLAIMER: Integra Technologies Inc. makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Integra Technologies Inc. assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Integra Technologies Inc. products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Integra Technologies Inc. customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Integra Technologies Inc. for any damages resulting from such improper use or sale. Copyright © 2018.

Integra Technologies, 321 Coral Circle, El Segundo, CA 90245-4620 | Phone: 310-606-0855 | Fax: 310-606-0865