

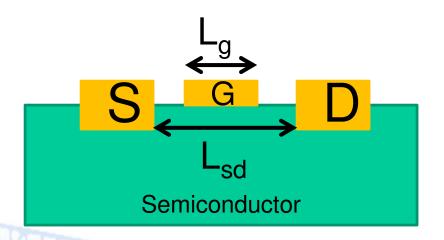
High Power GaN Transistors

John Walker Integra Technologies, Inc.

Integra Technologies, Inc. • 321 Coral Circle • El Segundo, CA 90245-4620 • Telephone: (310) 606-0855 • Fax: (310) 606-0865 • Copyright © 2007 All Rights Reserved W W W . in tegratech.com

SCOPE

- >100W
- >1GHz
- Pulsed


AGENDA

- Technical Background
- Integra Die Manufacturing Process
- State-of-the-art GaN Products
- Conclusions

THE TECHNICAL PROBLEM

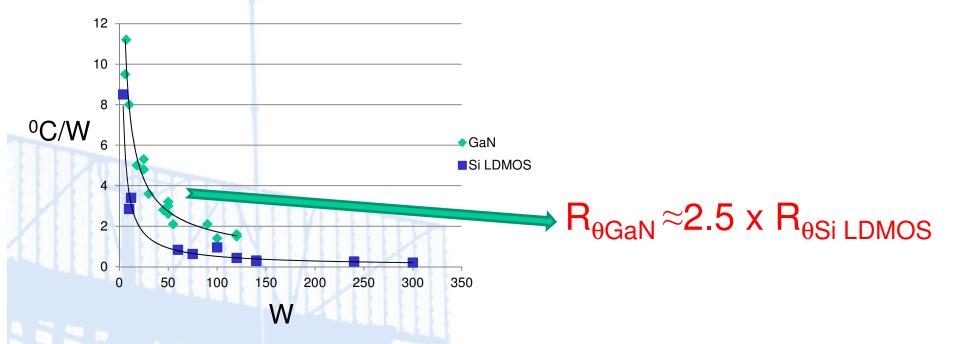
As frequency ↑

 $L_{a} \downarrow$ (to reduce capacitance)

L_{ds} ↓(to reduce parasitic series resistance)

V_{dsBK} ↓ (Critical field remains constant) RF output power /mm of gate width↓

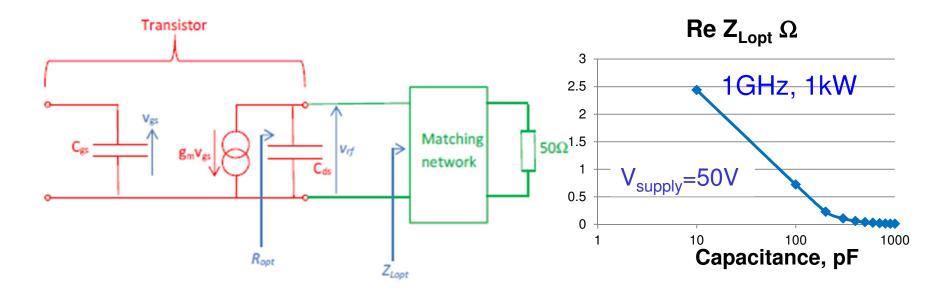
The solution: Use a semiconductor with as high a critical field as possible


THE TECHNICAL PROBLEM (Cont.)

	Critical Field	Thermal Conductivity
Si	X	у
GaN	10x	у
SiC	10x	3y

- Cannot utilise factor of 10 power advantage of GaN c.f. Si using only GaN because of thermal limitation
- Even GaN on SiC will allow only a factor of 2-3 power advantage in CW
- GaN on SiC can offer >3x Si power in pulsed applications
- NB Higher power/mm² means lower Capacitance/Watt i.e.
 GaN can operate to higher frequency than Si.

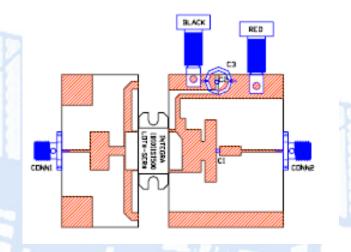
CW Thermal resistance of discrete single-ended transistors


GaN is an ideal technology for pulsed applications!

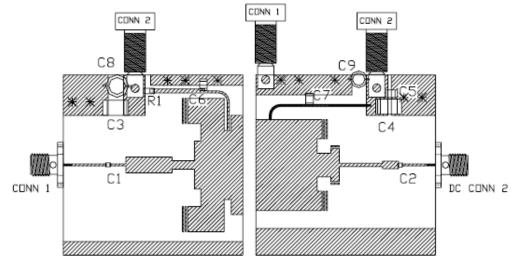
16 manufacturers worldwide of pulsed GaN transistors!

IMPORTANCE OF LOW CAPACITANCE

$$Z_{Lopt} = \frac{R_{opt}}{1 - j\omega C_{ds} R_{opt}}$$


Si Bipolar

- Very mature
- Very reliable
- Higher efficiency than LDMOS (class C vs class A/B) – almost as good as GaN
- Simplest & cheapest circuits of any technology
- Frequency extension via common-base mode
- Lowest gain
- Very non-linear
- BeO package



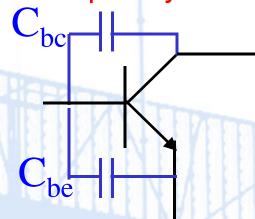
Si Bipolar

Simplest & cheapest circuits of any technology

1.5kW bipolar L bandJust 2 chip capacitors1 supply voltage

1kW LDMOS L band 10 capacitors, 1 resistor 2 supply voltages

Si Bipolar


- Very mature
- Very reliable
- Higher efficiency than LDMOS (class C vs class A/B) – almost as good as GaN
- Simplest & cheapest circuits of any technology
- > Frequency extension via common-base mode
- Lowest gain
- Very non-linear
- BeO package

Si Bipolar

Frequency extension via common-base mode

$$f_t \propto \frac{1}{c_{in}} = \frac{1}{c_{be} + c_{bc}}$$

$$f_t \propto \frac{1}{c_{in}} = \frac{1}{c_{be}}$$

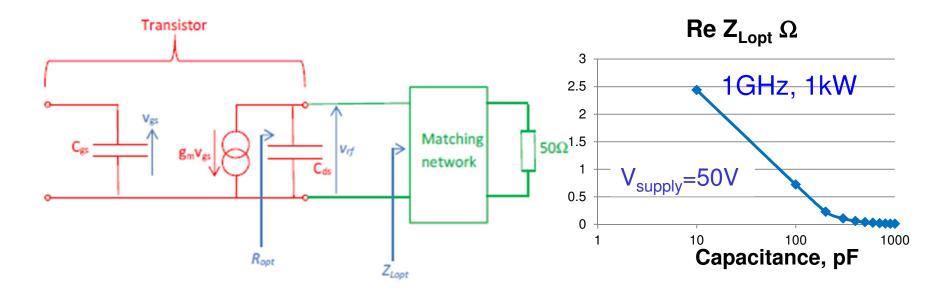
FETs have C_{ds} which is comparable in value to C_{gs} so no frequency extension by using common gate mode

Si Bipolar

- Very mature
- Very reliable
- Higher efficiency than LDMOS (class C vs class A/B) – almost as good as GaN
- Simplest & cheapest circuits of any technology
- Frequency extension via common-base mode
- > Lowest gain
- ➤ Very non-linear
- ➢ BeO package

Si LDMOS

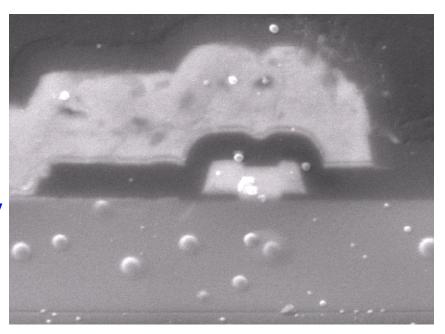
- Very linear
- BeO-free and cheaper package
- About 2dB more gain than bipolar but less than GaN
- Lowest efficiency
- No increase in power output compared with bipolar


GaN

- Lowest capacitance per Watt of any technology
 - Wider bandwidth and higher frequency, less ripple
- Higher optimum load impedance
- Highest power density
 - Thermal issues
- Worse linearity than LDMOS

IMPORTANCE OF LOW CAPACITANCE

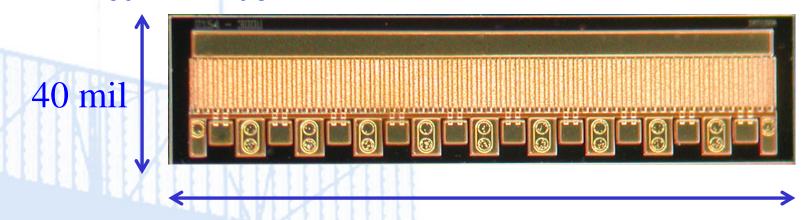
$$Z_{Lopt} = \frac{R_{opt}}{1 - j\omega C_{ds} R_{opt}}$$


2.7-2.9GHz, 300μs, 10% duty cycle

	Device	Technology	Power (W)	Power- Added Efficiency %	Gain (dB)	Voltage (V)	
	IB2729M170	Si Bipolar	190	45	9.5	36	
	ILD2731M140	LDMOS	180	40.5	10.5	32	
	IGN2729M250	GaN	260	51	9.5	36	
	IGN2729M800	GaN	1000	55	11	50	

Integra Die Manufacturing Process

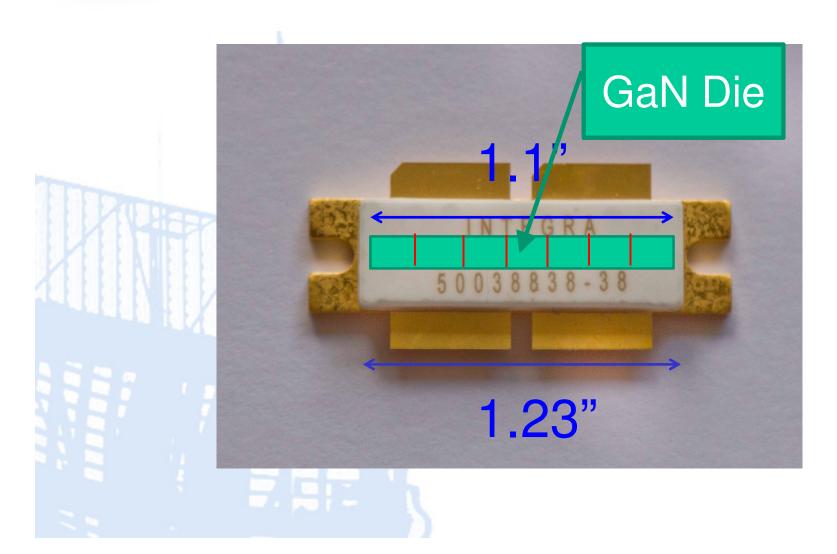
- Integra designs and manufactures its own GaN die
- Die specifically designed for pulsed operation
- 4" GaN on SiC (6" ready)
- 0.5μm process
- Ti/Al/Ni/Au Ohmic contacts
- Ni/Au Gate contact
- 3 mil die thickness
- Double field plate design
- No via holes
- All gold process for high reliability
- High breakdown voltage for reliable 50V operation



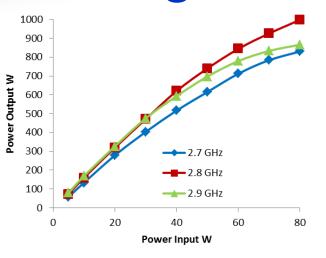
Die Details

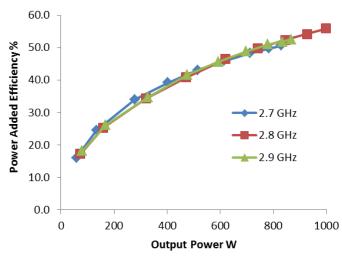
- 36mm total gate periphery
- 300µm finger width
- >150W 2.7-2.9GHz

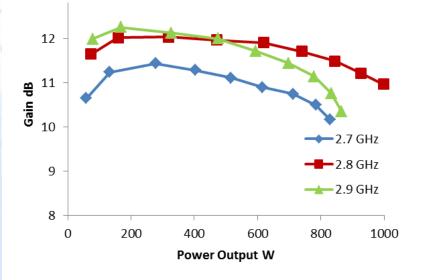
154 mil


AGENDA

- Technical Background
- Integra Die Manufacturing Process
- > State-of-the-art GaN Products
- Conclusions


Integra 800W S band Package Details



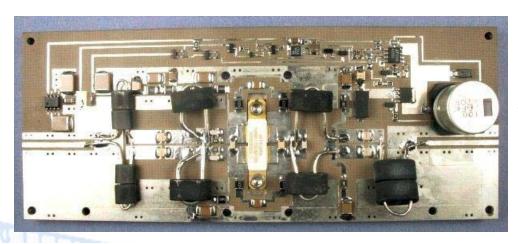


Integra 800W S band Results

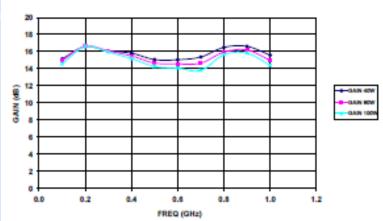
Test Conditions: $300\mu s$, 10% 50V, $I_{DQ}=100mA$

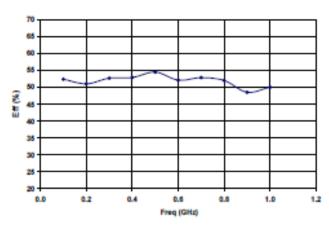
Integra 135W 3.1-3.5GHz 50Ω matched transistor

Test Conditions: $300\mu s$, 10% 46V, I_{DQ} = 25mA


Typically 13dB gain, 50% efficiency, 10dB return loss

Typical application: phased array radar





100W CW 100-1000MHz GaN Pallet

Test Conditions: $V_{ds}=28V$ $I_{DQ}=480mA$

Exploits low pF/W advantage of GaN

CONCLUSIONS

This paper has shown examples of state-ofthe-art GaN products

