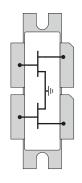


L-Band, GaN/SiC, RF Power Transistor

1030 MHz | 6000 W typ | 73% Efficiency typ | 19 dB Gain typ | 125 V | 32μs Pulse Length, 4% Duty Cycle

IGN1030S5000 and IGN1030S5000S are high power GaNon-SiC RF power transistors that have been designed to suit the unique needs of IFF/SSR avionics systems. Under 32µs, 4% duty cycle pulse conditions, they typically supply 5000 W of peak output power, with 18.5dB of associated gain and 68% efficiency. They operate from a 125 V supply voltage. For optimal thermal efficiency, the transistors are housed in a metal-based package with an epoxy-sealed ceramic lid.



FEATURES

- GaN on SiC HEMT Technology
- Output Power >5000 W
- Pre-matched Input Impedance
- High Efficiency up to 73% during the RF pulse
- 100% RF Tested
- RoHS and REACH Compliant
- Full non-linear electrothermal model available, please contact the factory

APPLICATIONS

- L-band Avionics IFF & SSR Systems
- Suitable for both uplink and downlink (Transponder)

Table 1. RF Electrical Characteristics (Case temperature = 30 °C unless otherwise stated)

Parameter	Symbol	Min	Тур	Max	Units	Test Conditions
Gain	G	18.0	19.0	22.0	dB	_
Drain Efficiency	η	60	68	80	%	P _{OUT} = 5000W
Pulse Droop	D	-0.5	-0.4	+0.2	dB	f = 1030 MHz 32 μ s pulse length, 4% duty cycle V_{DS} = 125V, I_{DS} = 75mA per side
Input Return Loss	IRL	10	14	18	dB	
Load Mismatch Stability	VSWR-S	2:1				
VSWR Withstand	VSWR-LMT	3:1				
Second Harmonic			-50		dBc	

Note 1: Consult Integra Technologies Application Note 001 for information on how RF output power and pulse droop are measured.

Table 2. DC Electrical Characteristics (Case temperature = 25 °C unless otherwise stated)

Parameter	Symbol	Min	Тур	Max	Units	Test Conditions
Gate Pinch-Off Voltage	V _P	-5.0			V	$V_{DS} = 125V, I_{DS} = 1mA$
Quiescent Gate Voltage	V _Q		-2.8		V	V_{DS} = 125V, I_{DS} = 75mA per side

Table 3. Absolute Maximum Ratings (Not Simultaneous)

Parameter	Symbol	Value	Units	Test Conditions
DC Drain-Source Voltage	V _{DS}	400	V	25 °C
DC Gate-Source Voltage	V _{GS}	-8 to +1.0	V	25 °C
DC Drain Current	I _D	156	A	25 °C
DC Gate Current	I _G	156	mA	25 °C
RF Input Power	P _{RF,IN}	100	W	25 °C
Operating Channel Temperature	T _J	-55 to +225	°C	
Storage Temperature	T _{STG}	-55 to +150	°C	
Soldering Temperature	T _{SOLDER}	260 for 60s	°C	

Note: Operation outside the limits given in this table may cause permanent damage to the transistor

Table 4. Thermal Resistance (Case temperature = 85 °C unless otherwise stated)

Parameter	Symbol	Тур	Units	Test Conditions
Peak Thermal Resistance Channel to Case per side	R _{TH}	0.08	°C/W	$P_{_{diss}}$ = 1176W per side 32 μs pulse length, 4% duty cycle $V_{_{DS}}$ = 125V

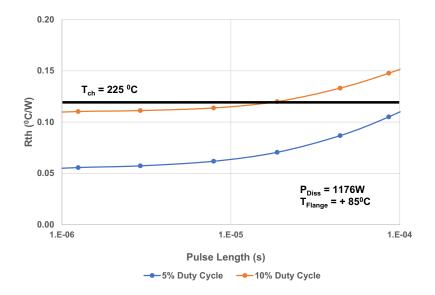
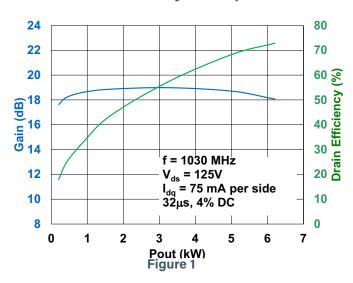
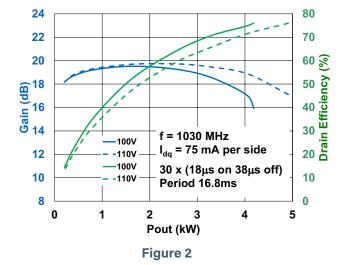
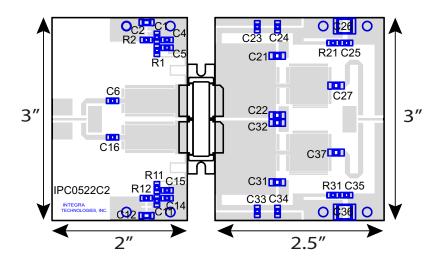


Table 5. Test Fixture One Side to Ground Source & Load Impedances (Case temperature = 25 °C unless otherwise stated)

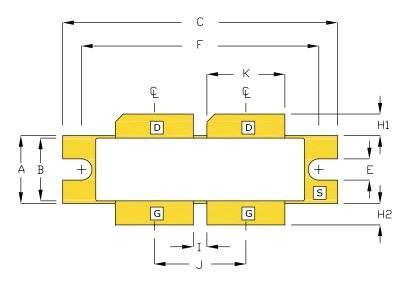

Frequency (MHz)	Z _{IF}	Z _{or} Fundamental	Z _{of} Second Harmonic	Units	Test Conditions
					P _{out} = 5000W
1030	1.6 - j 0.6	1.08 + j 0.18	0.23 + j 3.11	Ω	32μs pulse length, 4% duty cycle
					$V_{DS} = 125V$, $I_{DS} = 75$ mA per side


Note: Source and load impedances are terminal to ground and are measured looking into the test fixture with an identical signal simultaneously applied to both terminals i.e. even mode excitation.

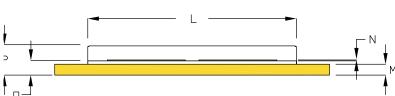
TYPICAL PERFORMANCE


Gain & Efficiency vs Output Power

TEST FIXTURE



Bill of Materials for IGN1030S5000 Test Fixture


Designator	Description	Quantity	Part Number
C1, C11, C25, C35	CAP 0.068µF, 0805, 250V, X7R	4	C0805C683KARACAUTO
C2, C12	CAP 1μF, 125V, 1206, X7R	2	12061C105K4T2A
C4, C14	CAP 1000pF, 100V, 0805	2	08051A102J4T2A
C5, C6, C15, C16, C23, C24, C33, C34	CAP 33pF, 0805, Edge Mount	8	ATC600F330
C21, C22, C31, C32	CAP 4.7pF, 1111, Edge Mount	4	ATC800B4R7
C27, C37	CAP 150pF, 1111, Edge Mount	2	ATC800B151
C26, C36	CAP 2.2μF, 250V, 2220, X7R	2	C2220C225MAR2CT500
R1, R11, R21, R31	RES 15 OHM, 0805	4	CRCW080515R0JNEA
R2, R12	RES 100 OHM, 0805	2	CRCW0805125RFKTA
PC Board Type	ROGERS RO3006, 25mil, 2/2oz. Copper	2	

PACKAGE PL124A1

	INCHES	3	MILLIM	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.395	0.405	10.03	10.29
В	0,366	0.374	9,29	9.49
С	1.615	1.625	41.02	41.27
E	0.120	0.130	3.05	3.30
F	1.395	1.405	35,43	35.69
H1	0.120	0.130	3.05	3.30
H2	0.120	0.130	3.05	3.30
I	0.075	0,085	1,90	2.16
J	0,535	0.545	13,59	13,84
К	0.455	0.465	11.55	11.81
L	1.218	1.242	30.93	31.54
М	0.059	0.069	1,499	1.752
Ν	0.004	0.007	0.10	0.18
	0.079	0,089	2.00	2.26
Р	0.165	0.188	4.19	4.77

PIN S	SCHEDULE
D	DRAIN
S	SOURCE
G	GATE

BOLT-DOWN FLANGE OPTION IGN1030S5000

	INCHES	2	MILLIM	1ETERS
DIM	MIN	MAX	MIN	MAX
Α	0.395	0.405	10.03	10.29
В	0.366	0.374	9.29	9.49
С	1.265	1.275	32.13	32.38
E				
F				
H1	0.120	0.130	3.05	3.30
H2	0.120	0.130	3.05	3.30
I	0.075	0.085	1.90	2.16
J	0.535	0.545	13.59	13.84
К	0.455	0.465	11.55	11.81
L	1.218	1.242	30.93	31.54
М	0.059	0.069	1.499	1.752
N	0.004	0.007	0.10	0.18
	0.079	0.089	2.00	2.26
LP	0.165	0.188	4.19	4.77

	PIN SCHEDULE			
ł	D	DDATN		
ı	ע	DRAIN		
	2	SOURCE		
ł	-			
	l li	GATE		

EARLESS FLANGE OPTION IGN1030S5000S

ESD & MSL Rating

Parameter	Rating	Standard
ESD Human Body Model (HBM)	TBD	ESDA/JEDEC JS-001-2012
ESD Charged Device Model (CDM)	TBD	JEDEC JESD22-C101F
Moisture Sensitivty Level (MSL)	Unlimited Shelf Life	IPC/JEDEC J-STD-020

RoHS Compliance

Integra Technologies, Inc declares that its GaN and LDMOS Transistor Products comply with EU Directive 2011/65/EU on the restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS2), as adopted by EU member states on January 2, 2013 and amended on March 31, 2015 by EU Directive 2015/863/EU.

REACH Compliance

Integra Technologies supports EU Regulation number 1907/2006 concerning the Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH) as these apply to Integra semiconductor products, development tools, and shipping packaging.

In support of the REACH regulation, Integra will:

- Inform customers and recipients of Integra product if they contain any substances that are of very high concern (SVHC) per the European Chemical Agency (ECHA) website.
- Notify ECHA if any Integra product that contains any SVHCs which exceed guidelines for REACH chemicals by weight per part number and for total content weight per year for all products produced in or imported to the European market.
- Cease shipments of product containing REACH Annex XIV substances until authorization has been obtained.
- Cease shipment of product containing REACH Annex XVII chemicals when restrictions apply.

Integra has evaluated its materials, BOMs, and product specifications and product and has determined that this transistor conforms to all REACH and SVHC regulations and guidelines. Integra has implemented actions and control programs that will assure continued compliance.

Disclaimer

Integra Technologies Inc. reserves the right to make changes without further notice to any products herein. Integra Technologies Inc. makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Integra Technologies Inc. assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Integra Technologies Inc. products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Integra Technologies Inc. customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Integra Technologies Inc. for any damages resulting from such improper use or sale.

DEFINITIONS

DATA SHEET STATUS

Advanced Specification - This data sheet contains Advanced specifications.

Preliminary Specification - This data sheet contains specifications based on preliminary measurements and data.

Final Specification - This data sheet contains final product specifications.

MAXIMUM RATINGS Stress above one or more of the maximum ratings may cause permanent damage to the device. These are maximum ratings only operation of the device at these or at any other conditions above those given in the characteristics sections of the specification is not implied. Exposure to maximum values for extended periods of time may affect device reliability.

Integra Technologies, 321 Coral Circle, El Segundo, CA 90245-4620 | Phone: 310-606-0855 | Fax: 310-606-0865